Cascade AdaBoost Classifiers with Stage Features Optimization for Cellular Phone Embedded Face Detection System

نویسندگان

  • Xusheng Tang
  • Zongying Ou
  • Tieming Su
  • Pengfei Zhao
چکیده

In this paper, we propose a novel feature optimization method to build a cascade Adaboost face detector for real-time applications on cellular phone, such as teleconferencing, user interfaces, and security access control. AdaBoost algorithm selects a set of features and combines them into a final strong classifier. However, conventional AdaBoost is a sequential forward search procedure using the greedy selection strategy, redundancy cannot be avoided. On the other hand, design of embedded systems must find a good trade-off between performances and code size due to the limited amount of resource available in a mobile phone. To address this issue, we proposed a novel Genetic Algorithm post optimization procedure for a given boosted classifier, which leads to shorter final classifiers and a speedup of classification. This GAoptimization algorithm is very suitable for building application of embed and resource-limit device. Experimental results show that our cellular phone embedded face detection system based on this technique can accurately and fast locate face with less computational and memory cost. It runs at 275ms per image of size 384×286 pixels with high detection rates on a SANYO cellular phone with ARM926EJ-S processor that lacks floating-point hardware.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection

We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminativ...

متن کامل

A Multi-Stage Approach to Fast Face Detection

A multi-stage approach — which is fast, robust and easy to train — for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage ...

متن کامل

Multi-Stage Approach to Fast Face Detection

This paper describes a multi-stage approach for achieving fast and robust face detection. This approach was motivated by the work of Viola and Jones [7] using a cascade of classifiers yielding a coarse-to-fine strategy to significantly reduce detection time while maintaining high detection rate. However, it is distinguished from the previous work by two facts: (i) First, a new stage is added to...

متن کامل

Face Detection Based on Fuzzy Cascade Classifier with Scale-invariant Features

Viola et al. have introduced a rapid object detection framework based on a boosted cascade of simple feature classifiers. In this paper we extend their work and achieve two contributions. Firstly, we propose a novel feature definition and introduce a feature shape mask to represent it. The defined features are scale-invariant which means the features can be rescaled easily and reduce the perfor...

متن کامل

Using Skin Color and HAD-AdaBoost Algorithm for Face Detection in Color Images

Owing to the interference of the complex background in color image, high false positive rate is a problem in face detection based on AdaBoost algorithm. In addition, the training process of AdaBoost is very time consuming. To address these problems, this paper proposes a two-stage face detection method using skin color segmentation and heuristics-structured adaptive to detection AdaBoost (HAD-A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005